Genetic and Evolutionary Algorithms and Programming
نویسندگان
چکیده
98. Nelson DB (1990) Stationarity and persistence in the GARCH(1,1) model. Econom Theory 6:318–334 99. Nelson DB (1991) Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59:347–370 100. Nelson DB, Cao CQ (1992) Inequality constraints in the univariate garchmodel. J Bus Econ Stat 10:229–235 101. Newey WK, Steigerwald DS (1997) Asymptotic bias for quasi maximum likelihood estimators in conditional heteroskedasticity models. Econometrica 3:587–599 102. Nijman T, Sentana E (1996) Marginalization and contemporaneous aggregation in multivariate GARCH processes. J Econom 71:71–87 103. Pantula SG (1988) Estimation of autoregressive models with ARCH errors. Sankhya Indian J Stat B 50:119–138 104. Peng L, Yao Q (2003) Least absolute deviations estimation for ARCH and GARCHmodels. Biometrika 90:967–975 105. Robinson PM (1991) Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J Econom 47:67–84 106. Ross SA (1976) The arbitrage theory of capital asset pricing. J Econ Theory 13:341–360 107. Sentana E, Fiorentini G (2001) Identification, estimation and testing of conditionally heteroskedastic factor models. J Econom 102:143–164 108. Sharpe WF (1964) Capital asset prices: A theory of market equilibriumunder conditions of risk. J Finance 19:425–442 109. Shephard N (2005) Stochastic Volatility: Selected Readings. Oxford University Press, Oxford 110. Straumann D, Mikosch T (2006) Quasi-mle in heteroscedastic times series: a stochastic recurrenceequations approach. Ann Stat 34:2449–2495 111. Taylor SJ (1986) Modelling Financial Time Series. Wiley, New York 112. Tse YK (2000) A test for constant correlations in a multivariate GARCHmodel. J Econom 98:107–127 113. Tse YK, Tsui AKC (2002) A multivariate GARCH model with time-varying correlations. J Bus Econ Stat 20:351–362 114. van der Weide R (2002) Go-garch: A multivariate generalized orthogonal GARCHmodel. J Appl Econom 17:549–564 115. Vrontos ID, Dellaportas P, Politis DN (2000) Full bayesian inference for GARCH and EGARCH models. J Bus Econ Stat 18:187198 116. Vrontos ID, Dellaportas P, Politis D (2003) A full-factor multivariate garchmodel. Econom J 6:311–333 117. Wang Y (2002) Asymptotic nonequivalence of GARCHmodels and diffusions. Ann Stat 30:754–783 118. Weiss AA (1986) Asymptotic theory for ARCHmodels: Estimation and testing. Econom Theory 2:107–131 119. Yang L (2006) A semiparametric GARCHmodel for foreign exchange volatility. J Econom 130:365–384 120. Yang L, Härdle W, Nielsen P (1999) Nonparametric autoregression with multiplicative volatility and additive mean. J Time Ser Anal 20:579–604 121. Zaffaroni P (2007) Aggregation and memory of models of changing volatility. J Econom 136:237–249 122. Zaffaroni P (2007) Contemporaneous aggregation of GARCH processes. J Time Series Anal 28:521–544 123. Zakoian JM (1994) Threshold heteroskedastic functions. J Econ Dyn Control 18:931–955 Books and Reviews
منابع مشابه
The Effectiveness of Genetic Planning Model in rainfall-runoff Simulation process
The prediction of river, s discharge rate is one of the important issues in water resources engineering. This issue is very important for the planning, management, and policy making in water resources management, especially in the country like Iran, with limited water resources in line the economic and environmental development. Awareness of how the relationship between rainfall and run...
متن کاملA Continuous Plane Model to Machine Layout Problems Considering Pick-Up and Drop-Off Points: An Evolutionary Algorithm
One of the well-known evolutionary algorithms inspired by biological evolution is genetic algorithm (GA) that is employed as a robust and global optimization tool to search for the best or near-optimal solution with the search space. In this paper, this algorithm is used to solve unequalsized machines (or intra-cell) layout problems considering pick-up and drop-off (input/output) points. Such p...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملShuffled Frog-Leaping Programming for Solving Regression Problems
There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کاملGradient-based Ant Colony Optimization for Continuous Spaces
A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...
متن کامل